Newsletter Subscription


Monday, Dec 5, 2016


What to Expect from Schiaparelli's Camera

As the ExoMars Schiaparelli module descends onto Mars on 19 October it will capture 15 images of the approaching surface. Scientists have simulated the view we can expect to see from the descent camera.

Schiaparelli will separate from its mothership, the Trace Gas Orbiter, on 16 October, with some six million km still to travel before entering the atmosphere of Mars at 14:42 GMT three days later.

Related Research on ASDReports.com:
Global Military UAV Market Forecast to 2022

Its descent will take just under six minutes, using a heatshield, parachute, thrusters and a crushable structure for the landing.

Schiaparelli is primarily a technology demonstrator to test entry, descent and landing technologies for future missions and is therefore designed to operate for a only few days.

The small surface science package will take readings of the atmosphere, but there is no scientific camera like those found on other landers or rovers – including the ExoMars rover that is planned for launch in 2020.

The lander does, however, carry ESA’s small, 0.6 kg technical camera, a refurbished spare flight model of the Visual Monitoring Camera flown on ESA’s Herschel/Planck spacecraft to image the separation of the two craft after their joint launch.

Its role is to capture 15 black and white images during the descent that will be used to help reconstruct the module’s trajectory and its motion, as well giving context information for the final touchdown site.

The wide, 60º field-of-view will deliver a broad look at the landscape below, to maximise the chances of seeing features that will help to pinpoint the landing site and reveal Schiaparelli’s attitude and position during descent.

The camera will start taking images around a minute after Schiaparelli’s front shield is jettisoned, when the module is predicted to be about 3 km above the surface. This will result in images covering about 17 sq km on the surface.

The images will be taken at 1.5 s intervals, ending at an altitude of about 1.5 km, covering an area of roughly 4.6 sq km.

Then, at an altitude of about 1.2 km, the parachute and rear cover will be jettisoned, and the thrusters ignited. The thrusters will cut out just 2 m above the surface, with the module’s crushable structure absorbing the force of impact.

Schiaparelli will target the centre of a 100 km x 15 km landing ellipse, in a relatively flat area in Meridiani Planum, close to the equator in the southern hemisphere. This region has been imaged extensively from orbit, including by ESA’s Mars Express and NASA’s Mars Reconnaissance Orbiter.

To plan for analysing Schiaparelli’s descent, thousands of simulations were made varying the atmospheric conditions and the flight path to the surface. From one such simulation, which touched down at the centre of the landing ellipse, simulated images were then made using data from NASA’s orbiter covering the Meridiani region, as shown here.

In reality, the altitudes at which images are actually taken may vary somewhat, depending on the atmospheric conditions, the final path through the atmosphere and the speed at which Schiaparelli descends.

The real images taken on 19 October will be stored in Schiaparelli’s memory before being beamed up to the Mars Reconnaissance Orbiter and downlinked to Earth on 20 October.

Source : European Space Agency (ESA) - view original press release

Published on ASDNews: Oct 12, 2016

 

Military Radar Summit 2017

Feb 27 - Mar 1, 2017 - Washington, United States

Register More info


© 2004-2016 • ASDNews • be the first to know • contact usterms & conditionsprivacy policyadvertisingfaqs

zpsk