Akari Infrared Space Telescope: Latest Science Highlights

(November 19, 2008) -- The Akari infrared surveyor, a Japanese Aerospace Exploration Agency mission with ESA participation, has returned a host of new results. From splashes in cosmic rivers of dust and gas to supernova remnants, the mission has been uncovering secrets of the cold and dusty Universe. Splashes in the interstellar medium The interstellar medium, a tenuous mix of gas and tiny solid dust particles, permeates space. As stars age, they spew out gas and dust in a flow called stellar wind, which eventually mixes with the interstellar medium. At the interface between stellar wind and the interstellar medium, physical conditions such as density and pressure change dramatically, creating what is called a bow shock. Akari observations of Betelgeuse, a bright red supergiant star located in the constellation Orion about 200 light-years from Earth, show the star making a big splash by creating a bow shock as it crosses the interstellar medium. Researchers have found a strong flow of the interstellar medium around the star which originates from star-forming regions in Orion's Belt. Stars condense out of the interstellar medium at birth, and old stars like Betelgeuse spew out matter into surrounding space, enriching the interstellar medium. This process is repeated by generations of stars and assists the chemical evolution of the Universe. Akari has found a number of such bow shocks and investigation into these processes will further our understanding of the cosmic recycling of matter. Mysterious missing dust Globular clusters are spherical groups of a hundred thousand to a million stars that are found throughout our and other galaxies. A one-off star formation process in each system about 10 thousand million years ago triggered the formation of these globular clusters. Aged stars often eject large amounts of gas and dust into interstellar space, which eventually forms a new generation of stars and planets, so scientists expected to detect cold dust in the 12 globular clusters observed by Akari. But high-sensitivity observations with the Far-Infrared Surveyor onboard Akari yielded no evidence of cold dust in any of the clusters. One possibility is that the dust accreted on to the stellar surface. But such a process would take much longer than the lifetime of the cluster. The new Akari observations pose new questions to astronomers. Warm dust in supernova remnants At the end of their lives, massive stars explode in a catastrophic explosion, returning a huge amount of energy and heavy elements into space. Scientists believe that the explosion destroys the surrounding interstellar dust grains, leaving behind a supernova remnant which can be studied to understand the explosion itself as well as its role on the evolution of the interstellar medium. The study of interstellar dust is important because that very dust is a seed of another star as well as of a planet like Earth. The Large Magellanic Cloud is a companion galaxy of the Milky Way located at a distance of about 160 000 light-years from us. Its relatively short distance and unique location provides a unique view of the entire galaxy from Earth and the possibility to study the interstellar medium. Akari observations of about eight of the 20 reported supernova remnants in the region have revealed unexpected details. Akari has found that supernova remnants in the Large Magellanic Cloud are surrounded by previously-unknown warm dust. This suggests that some dust grains survive the shock of the supernova explosion. Further analysis with the Akari data will greatly improve our knowledge on supernova remnants and their influence on their surroundings.

Source: ESA
Date: Nov 20, 2008